SHORT COMMUNICATION

FLAVONOIDS OF THREE CROTALARIA SPECIES

S. Sankara Subramanian and S. Nagarajan

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 3 April 1970)

Abstract—The flavonoids of Crotalaria striata, C. paniculata and C. anagyroides have been studied, and apigenin and its glycosides are commonly found.

Plant. Species of Crotalaria (Leguminosae—sub-family Lotoideae).

Uses, Medicinal.1-4

Previous work. On sister species. 5-9

Present Work

Alcoholic extract of the material fractionated with petrol, ether and EtOAc.

C. striata DC. (= C. mucronata Desv.)

Leaves. Vitexin (from EtOAc fraction, 0.05% yield, m.p. and mixed m.p., hydrolytic fission with HI in phenol, R_f and co-chromatography) and vitexin-4'-O-xyloside (from the aq. fraction after EtOAc, by the lead salt method) (R_f and co-chromatography, hydrolysis to vitexin and xylose).

C. striata DC

Stem bark. Apigenin (from ether fraction, acetate, m.p. and mixed m.p., R_f and co-chromatography). Vitexin and its 4'-O-xyloside (from EtOAc fraction, confirmed as above).

C. paniculata Willd

Flowers. Quercetin 3-galactoside (from EtOAc fraction, m.p. and mixed m.p., R_f and co-chromatography, acid hydrolysis to quercetin and galactose), vitexin-4'-Q-xyloside (from EtOAc fraction, confirmed as under C. striata leaves).

- ¹ R. N. CHOPRA, S. L. NAYAR and I. C. CHOPRA, Glossary of Indian Medicinal Plants, p. 81, Council of Scientific & Industrial Research, New Delhi (1956).
- ² K. M. NADKARNI, Indian Materia Medica, Vol. I, p. 391, Popular Book Depot, Bombay (1954).
- ³ K. R. KIRTIKAR and B. D. BASU, *Indian Medicinal Plants* (edited by L. M. BASU), Vol. I, p. 693, Allahabad (1933).
- ⁴ J. M. WATT and M. G. Breyer-Brandwijk, *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, p. 577, E. & S. Livingstone, London (1962).
- ⁵ S. Sankara Subramanian and S. Nagarajan, Current Sci., India 36, 364 (1967).
- ⁶ S. Sankara Subramanian and S. Nagarajan, *Planta Med.* 16, 432 (1968).
- ⁷ S. Sankara Subramanian and S. Nagarajan, Current Sci., India 36, 403 (1967).
- ⁸ S. SANKARA SUBRAMANIAN and S. NAGARAJAN, Indian J. Pharm. 29, 311 (1967).
- 9 S. SANKARA SUBRAMANIAN and S. NAGARAJAN, Current Sci., India 38, 65 (1969).

C. anagyroides H. B. and K.

Stem bark. Apiin (from EtOAc fraction, m.p., R_f and hydrolysis by 10% H₂SO₄ to apigenin, glucose and apiose).

C. juncea L.

Seeds. Apigenin-7-glucuronide and apigenin-7,4'-O-di-glucoside (from EtOAc fraction, R_f).

Acknowledgement—We thank the Principal, J.I.P.M.E.R., for kind encouragement.

SHORT COMMUNICATION

CHLOROGENIN AND KAEMPFEROL GLYCOSIDES FROM THE FLOWERS OF AGAVE AMERICANA

S. SANKARA SUBRAMANIAN and A. G. R. NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 3 April 1970)

Abstract—Chlorogenin was isolated in a yield of 0.5% from the fresh flowers of Agave americana. The flavonol glycosides were identified as kaempferol-3-glucoside and kaempferol-3-rutinoside.

Plant. Agave americana L.—Amaryllidaceae.

Source. Pondicherry.

Uses. Medicinal.1,2

Previous work. Hecogenin from leaves; 2,3 work on sister species.4

Present work. Examination of flowers.

Fresh flowers extracted with hot ethanol (95%) under reflux, aq. concentrate shaken and layered with an equal volume of benzene and kept in an ice-chest for 2 weeks. The colourless solid separated at the interphase on crystallization thrice from MeOH yielded chlorogenin, 5 $C_{27}H_{44}O_4$, m.p. 272-274°, $[\alpha]_2^{28} - 51\cdot2^\circ$ (py); diacetyl, m.p. 154-155°, $[\alpha]_2^{28} - 36\cdot5^\circ$; dibenzoyl, m.p. 200-203°, $[\alpha]_2^{28} - 9\cdot8^\circ$. Benzene concentrate yielded a small quantity of the same solid (total yield, $0\cdot5^\circ$). No hecogenin could be identified. Ether extract of the aq. alc. concentrate yielded small quantity of kaempferol (R_f and co-chromatography). EtOAc extract yielded two glycosides of kaempferol (separated by preparative PC) identified as kaempferol-3-glucoside and kaempferol-3-rutinoside (m.p., R_f , acid hydrolysis and co-chromatography with authentic samples) (total yield of flavonols, 0.03°).

Acknowledgement-Our thanks are due to the Principal, J.I.P.M.E.R., for encouragement.

¹ R. N. CHOPRA, I. C. CHOPRA, K. L. HANDA and L. D. KAPUR, *Chopra's Indigenous Drugs of India*, p. 577, U. N. Dhur, Calcutta (1958).

² J. M. WATT and M. G. Breyer-Brandwijk, *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, p. 19, E. & S. Livingstone, London (1962).

³ H. SINGH and W. PEREIRA, JR., Indian J. Chem. 2, 297 (1964).

⁴ K. Paech and M. V. Tracey, *Modern Methods of Plant Analysis*, Vol. III, pp. 191-200, Springer-Verlag, Berlin (1955).

⁵ G. HARRIS, Dictionary of Organic Compounds, Vol. III, p. 629, Eyre & Spottiswoode, London (1965).